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Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as
ponderomotive wave-particle interactions in high-frequency fields. The ponderomotive effect arises when
rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation
wave, much like charged particles scatter off an oscillating electromagnetic field. Parallels with the point-
particle dynamics, which itself is subsumed under this theory, lead to new methods of wave manipulation,
including asymmetric barriers for light.
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Introduction.—One of the curious effects in wave-
particle interactions is that a rapidly oscillating electro-
magnetic (EM) field can produce a time-averaged force,
known as the ponderomotive force, on any particle that is
charged or, more generally, has a nonzero polarizability
[1,2]. This effect, which can be attractive or repulsive
depending on a specific interaction, is widely used in
various applications ranging from atomic cooling to plasma
confinement [3,4]. Moreover, it was shown recently that
ponderomotive forces can cause nonreciprocal dynamics,
such as one-way-wall effects [4–7], and perform other
nonintuitive transformations of the particle phase space [8].
As it turns out, and as we argue in this Letter, the same
effects can be practiced also on waves, if the parameters of
the medium are modulated in time or space.
Specifically, what we show here is that wave interactions

in Kerr media via cross-phase modulation (XPM) can be
cast in the same way as ponderomotive wave-particle
interactions. The ponderomotive effect arises when rays
of a geometrical-optics (GO) probe wave (PW) scatter off
medium perturbations produced by a second, modulation
wave (MW), much like particles scatter off EM waves. In
contrast to the PW refraction caused by gradual changes of
the medium average parameters (“slow” nonlinearity), the
ponderomotive effect on rays is instantaneous and can be
inferred from the PW linear dispersion alone, irrespective
of the medium equations.
The practical utility of these findings is twofold:

(i) Based on parallels with the wave-particle dynamics,
we predict new qualitative effects, including pondero-
motive reflection (which must not be confused with
resonant, Bragg reflection) and asymmetric barriers for
light; (ii) the XPM via instantaneous nonlinearities can now
be described, both generally and quantitatively, beyond the
special cases studied in literature [9–11]. In particular, we
derive equations for the PW continuous ponderomotive
dynamics that remain manifestly conservative even when
the medium average parameters slowly evolve in time or
space. We also show that the traditional theory of ponder-
omotive forces on point particles is subsumed under this

general wave theory if particles are treated quantum-
mechanically, as wave envelopes.
Basic equations.—Consider a linear PW propagating in a

general dissipationless medium such that the GO approxi-
mation is justified. This implies, in particular, that the wave
resides on a single branch of the dispersion relation, even
though parameters of the medium may vary with time t and
coordinates x≡ ðx1;…; xDÞ. (The number of spatial
dimensions, D, can be arbitrary.) Assuming, for simplicity,
that the wave is of the scalar type (which includes vector
waves with fixed polarization too), it can be assigned a
canonical phase θðt;xÞ, a scalar action density Iðt;xÞ, and
the Lagrangian density [12,13]

L ¼ −I ½∂tθ þ ωðt;x;∇θÞ&: (1)

Both θðt;xÞ and Iðt;xÞ are independent functions here, so
Eq. (1) generates two Euler-Lagrange equations,

∂tθ þ ω ¼ 0; (2)

∂tI þ∇ · ðIvgÞ ¼ 0; (3)

where vgðt;xÞ≐∂kωðt;x;kðt;xÞÞ is the group velocity,
and k≐∇θ is the local wave number, k≡ ðk1;…; kDÞ. (We
use the symbol ≐ to denote definitions. We also allow for
an arbitrary spatial metric gij and thus generally distinguish
upper and lower indexes in the usual manner.) Equation (2)
is of the Hamilton-Jacobi type and serves as the dispersion
relation, ω ¼ ωðt;x;kÞ, since −∂tθ is, by definition, the
wave local frequency. Equation (3) has the form of a
continuity equation and represents the action conservation
theorem. To close this set of equations, the so-called
consistency relations are used,

∂tkþ∇ω ¼ 0; ∇ × k ¼ 0; (4)

which flowfromthedefinitionsofωandk.Equations (2)–(4)
are known as the Whitham equations [14], and they also
subsume, as their characteristics, the familiar ray equations
for the components of x and k [15,16],
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_xl ¼ ∂ωðt;x;kÞ=∂kl; _kl ¼ −∂ωðt;x;kÞ=∂xl: (5)

Reduced equations.—Suppose now that ω ¼ ω̄þ ~ω,
where ~ωðt;x;kÞ ¼ Re½ ~ωcðt;x;kÞeiΘðt;xÞ& is a small pertur-
bation. We term the latter a MWand introduce its frequency
Ω≐ − ∂tΘ and wave vector K≐∇Θ. Suppose also that Θ
evolves slowly enough, so that the GO approximation for
the PW holds (and, in particular, resonant effects like Bragg
scattering do not occur). On the other hand, we will assume
that Θ evolves fast compared to the rate at which ω̄ and the
MW parameters (Ω, K, and the amplitude) change in time
and space. Hence we can unambiguously introduce the
slow, Θ-independent, or adiabatic dynamics, which is done
as follows.
Let us express the PW phase as θ ¼ θ̄ þ ~θ and the PW

action density as I ¼ Ī þ ~I , where ~θ and ~I are oscillating
functions of the order of ~ωc; also, θ̄≐hθi, and Ī≐hIi,
where the angular brackets denote local averaging over Θ.
As usual [14,17], the Lagrangian density of slow, adiabatic
dynamics can then be calculated as L̄ ¼ hLi. After neglect-
ing terms of order j ~ωcjr with r > 2, one gets

L̄ ¼ −Ī ½∂tθ̄ þ wðt;x;∇θ̄Þ&; (6)

where wðt;x; k̄Þ ¼ ω̄þ h∇~θ · ω̄k̄ k̄ · ∇~θi=2þ h ~ωk̄ · ∇~θiþ
h, and h≐hð∂t

~θ þ ω̄k̄ · ∇~θ þ ~ωÞ ~Ii. (Note that ∇~θ ∼ K ~θ,
and K cannot be too large in the GO limit.) Both ω̄ and ~ω
are evaluated here at ðt;x; k̄Þ, and the index k̄ denotes the
corresponding partial derivative. The quiver phase, ~θ,
satisfies the linearized equation ∂t

~θ þ ω̄k̄ ·∇~θ þ ~ω ¼ 0,
with k̄ ¼ ∇θ̄. This leads to h ¼ 0 and also ~θ ¼
−i ~ω=ðΩ −K · ω̄k̄Þ. A straightforward calculation then yields

wðt;x; k̄Þ ¼ ω̄þK
4
·
∂
∂k̄

!
j ~ωcj2

Ω −K · ω̄k̄

"
; (7)

where, within the adopted accuracy, ω̄k̄ can be replaced
with v̄g≐∂k̄ω0, and ω0 is the unperturbed PW frequency
evaluated at k̄. (The possible difference between ω0 and ω̄
will become clear from examples below.) Equations (6) and
(7) also lead to dynamic equations akin to the original
Whitham equations (2)–(4):

∂tθ̄ þ w ¼ 0; (8)

∂tĪ þ∇ · ðĪugÞ ¼ 0; (9)

∂tk̄þ∇ω̄ ¼ 0; ∇ × k̄ ¼ 0; (10)

where ug≐∂k̄w serves as a new, effective group velocity
modified by the presence of the MW. Then the correspond-
ing “oscillation-center” (OC) ray equations, which can be
considered as time-averaged Eqs. (5), are

_̄xl ¼ ∂wðt; x̄; k̄Þ=∂k̄l; _̄kl ¼ −∂wðt; x̄; k̄Þ=∂x̄l: (11)

Here w acts as the OC Hamiltonian of PW rays, or their
ponderomotive Hamiltonian, so one may recognize Eq. (7)
as an extension to continuous waves of what is a known
theorem in classical mechanics of discrete systems [18,19].
[The cause of this parallel is that Eq. (2), which describes
the dispersion relation of a continuous wave, is identical to
the Hamilton-Jacobi equation for a ray as a discrete
quasiparticle governed by Eqs. (5).] From the particle
analogy (cf. e.g., Ref. [5]), one also obtains the adiabaticity
condition underlying Eqs. (6)–(11); namely, in addition to
the smallness of ~ω, one must have

_τ ≪ 1; τ≐jΩ −K · v̄gj−1; (12)

where τ is the modulation time scale in the ray reference
frame, and the time derivative is taken along rays.
Equations (6)–(12) are the main analytical results of our

Letter. They provide a new, general description of the MW
effect on the GO propagation of a nondissipative continu-
ous PW in any medium with a Kerr-type, cubic nonlinearity
[20]. (XPM via second-order nonlinearities does not appear
in our picture because the Pockels effect, such as in
Ref. [21], requires _τ ≳ 1 and otherwise averages to zero.)
Slow nonlinearities enter here through the dependence of w
on Θ-averaged parameters of the medium. To assess this
effect quantitatively, one merely needs to add the OC
Lagrangian density of the medium to L̄ [15,22,23] and
calculate the medium evolution in response to the ponder-
omotive force that a MW produces on matter. However,
below we will focus instead on the general nonlinearity that
is independent of the medium inertia. It can be viewed as an
instantaneous ponderomotive effect that the MW produces
directly on PW rays and hence is termed “ponderomotive
refraction.”
Examples of adiabatic dynamics.—Even at small ~ω,

ponderomotive refraction can be a significant factor in
the PW evolution, especially when the underlying medium
is homogeneous and stationary. The effect can be particu-
larly strong near the group-velocity resonance (GVR),
Ω≃K · v̄g. This is naturally understood for broad-
spectrum PW pulses, as then the GVR can be (at least
loosely) interpreted as the Cherenkov resonance between
PW “quanta” and the MW [10,11,24]. However, as seen
from our theory, the GVR remains a peculiar regime even
for homogeneous waves, in which case v̄g does not have the
transparent meaning of the envelope velocity. What is also
remarkable is that Eq. (7) describes ponderomotive refrac-
tion solely from the PW linear dispersion, irrespective of
equations that describe the medium nonlinear dynamics, in
contrast to traditional theories [25]. Here are some
examples.
(i) First, suppose a sound-like wave, ωðt;x;kÞ ¼

kCðt;xÞ, where Cðt;xÞ ¼ C0ðt;xÞ þ Re½ ~Cðt;xÞeiΘðt;xÞ&,
such that C0 and ~C are slow functions. Then
ω̄ ¼ ω0 ¼ k̄C0, and ~ω ¼ k̄ ~C, so Eq. (7) yields
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w ¼ ω0

#
1þ ε2 cos χ

U − cos χ
þ ε2sin2χ
2ðU − cos χÞ2

$
; (13)

where U≐Ω=ðKC0Þ, ε2≐j ~Cj2=ð2C2
0Þ, and χ is the angle

between k̄ and K. Suppose, for simplicity, that U ∼ 1 and
that any spatial gradients are along K, so the transverse
wave vector, k̄⊥, is conserved. At quasiparallel propagation
(k̄∥ ≫ k̄⊥, where k̄∥ is the parallel component of the wave
vector), one then gets w≃ k̄∥Ceff , where Ceff≐
C0½1þ ε2=ðU − 1Þ&; i.e., the ponderomotive effect changes
the sound speed from C0 to Ceff . At quasitransverse
propagation (k̄∥ ≪ k̄⊥), one gets w=ðk̄xC0Þ≃ 1þ
ðp − αÞ2=2þ ϕ, where p≐k̄∥=k̄⊥, α≐ − ε2ð1þ U2Þ=U3,
and ϕ≐ε2=ð2U2Þ. If C0 is constant, and α is independent of
time, then α is removable by gauge transformation as an
effective vector potential; hence the ponderomotive effect
consists of ray repulsion by the scalar potential ϕ. Notably,
the linear theory of mode conversion [26] does not capture
these effects.
(ii) As another example, consider an EM wave in plasma

with electron-density relative perturbation ~Nðt;xÞ. Then
ωðt;x;kÞ ¼ ½ω2

pðt;xÞ þ k2c2&1=2, where ωp ¼ ωp0ð1þ
~NÞ1=2 is the plasma frequency, ωp0 is its unperturbed value,
and c is the speed of light. (Relativistic effects [27] are
neglected in this model.) Hence ~ω≃ ~Nω2

p0=ð2ω0Þ,
ω̄≃ ð1 − ε2Þω0, and v̄g ¼ c2k̄=ω0, where ω0 ¼ ðω2

p0þ
k̄2c2Þ1=2, ε≐ ~Nmω2

p0=ð4ω2
0Þ, and ~Nm is the amplitude of

~N. One then gets

w ¼ ω0½1 − ε2ðΩ2 − K2c2Þ=ðΩ −K · v̄gÞ2&: (14)

Note that EM wave propagation in static modulated media,
like photonic crystals [28], are described by Eq. (14) as a
special case corresponding to Ω ¼ 0 (cf. e.g., Ref. [29]);
then w ¼ ω0½1þ ðε=n∥Þ2&, where n∥ ≡ k̄∥c=ω0 is the PW
refraction index alongK. (However, this result applies only
at large enough n∥, such that ug does not deviate much from
v̄g.) Also let us consider the opposite limit, Ω ≫ K · v̄g.
Assuming, for simplicity, that k̄ is small, in this case one
gets w=ωp0 ≃ 1þ c2k̄2=ð2ω2

p0Þ þ ϕ, where ϕ ¼ ε2ðN2 −
1Þ acts as an effective potential. Its sign is determined by
the MW refraction index, N≐Kc=Ω, which, in principle,
can have any value, especially if the MW is produced by
driven fields. Such ϕ thereby attracts PW rays if N < 1 and
repels them [30] if N > 1 (Fig. 1). (In particular, the latter
case is realized when the MW is one of the natural plasma
waves, e.g., an ion acoustic or Langmuir wave.) Such an
effective potential is similar to the adiabatic ponderomotive
potential seen by point charges in a high-frequency EM
field [1].
Nonadiabatic dynamics.—The wave-particle analogy is

also naturally extrapolated to the Pockels regime (_τ ≳ 1),
where the interaction is nonadiabatic [4,8]. Based on what
is known about the particle dynamics in nonadiabatic
ponderomotive barriers [4,8,31], one readily anticipates

that regions of strong MW can be arranged in this regime to
scatter PW rays probabilistically and, when Ω is nonzero,
also asymmetrically. This is confirmed in simulations
already for simple MW envelopes (Fig. 2), and asymmetry
can be made even stronger if the MW shape is specially
adjusted (Fig. 3). (Notably, these manipulations are some-
what akin to those produced by effective gauge fields on
PWs in externally driven lattices of multimode resonators
[32]. The difference is, however, that our ponderomotive
forces can be applied to single-mode pulses and in simpler,
continuous media.)
Such “one-way walls” can be used to direct rays in a

ratchet manner, as suggested in Refs. [5,6] for charged
particles, or even to concentrate them, as proposed and
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FIG. 1 (color online). Results of one-dimensional full-wave
simulations of the EM pulse scattering in plasma by a density
wave with stationary envelope, Ω ¼ ωp0κ20, and K ¼ −0.12k0;
here κ0≐ck0=ωp0⋘1, and k0 is the initial wave number. Slow
nonlinearities are ignored, and oscillations at the constant carrier
frequency ωp0 are mapped out. The electric field envelope E is
given in units of its maximum amplitude, Emax; ~N is given in units
κ20; t is given in units κ−20 ω−1

p0 ; x is given in units k−10 . (a) Initial
setup (t ¼ 0); shown are E (blue, narrow envelopes) and ~N (red,
wide envelope). (b) jEðt; xÞj2 and the ray trajectory found by
numerical integration of Eqs. (11).
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FIG. 2 (color online). Same as in Fig. 1 but for Ω ¼ 0.03ωp0κ20
and K ¼ 0.2jk0j. Two cases are considered, k0 > 0 and k0 < 0,
with identical jk0j. (a) Initial setup (t ¼ 0); the arrows denote the
directions of propagation. (b) jEðt; xÞj for k0 > 0. The pulse hits
the GVR at about k0x≃ −100; then it is partially transmitted and
partially reflected, much like it is described for particles in
Ref. [31]. (c) jEðt; xÞj for k0 < 0. As the signs of k0 and K are
different, the pulse never hits the GVR and is fully transmitted.
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implemented in Ref. [7] for atoms. For example, suppose a
barrier shown in Fig. 3 and the concentrator scheme as in
the inset. With the aid of an additional mirror, this barrier
can confine photons on its left side. That applies, of course,
only for photons with energies below a certain threshold,
whereas those transmitted from the right have energies
above that threshold and thus can escape. (This is because,
in the adiabatic domain, the motion is reversible, so any
photon that once was at the top of the barrier can return
there in the future.) However, like in the case of charged
particles [5,6] and atoms [7], the barrier can serve as a one-
way wall if dissipation is added. Suppose that a transmitted
photon, with some frequency ω1, undergoes Raman
decay into some natural oscillations with frequency ωR
and another photon with frequency ω2 < ω1. The former
will dissipate, but, assuming ωR ≪ ω1, this energy loss can
be negligible. The second photon, however, now has a
smaller (ideally, zero) probability to escape due to its lower
energy and thus is stuck between the one-way wall and the
mirror until it decays through the Raman cascade. Hence
the photon density in that region will be higher than
outside.
Classical particles as PWs.—Although the above dis-

cussion appeals to understanding waves as particles, the
particle dynamics itself can be viewed merely as a special
case of the ponderomotive-refraction theory. To show this,
we approach it quantum-mechanically as follows. Consider
the Lagrangian density of a nonrelativistic quantum par-
ticle, L ¼ ðiℏ=2Þðψ'∂tψ − ψ∂tψ'Þ − ψ'Hðt;x;−iℏ∇Þψ ,
where H is a Hamiltonian, and ψðt;xÞ is the wave function
in the spatial representation [13]. (Relativistic particles can
be described similarly, but they generally must be treated as
vector waves.) Let us represent this function through its
(real) phase S=ℏ and amplitude

ffiffiffiffi
I

p
. Specifically, we write

ψ ¼ eiSðt;xÞ=ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðt;xÞ

p
, where I is now chosen to have

units of number density rather than of action density, as
before. Assuming that ψðt;xÞ is quasiclassical, we have
Hðt;x;−iℏ∇Þψ ≃Hðt;x;∇SÞψ , so L ¼ −I ½∂tSþHðt;
x;∇SÞ&. This expression does not contain ℏ and has the
same form as Eq. (1). [Notably, it also reproduces the well-
known Lagrangian density of cold classical fluid [33] as a
special case.] Therefore, if the particle Hamiltonian consists
of slow and rapidly oscillating parts, H ¼ H̄ þ ~H, we can
introduce a ponderomotive Lagrangian L̄ ¼ −Ī ½∂tS̄þ
Hðt;x;∇S̄Þ& that describes the particle dynamics averaged
over the oscillations of ~H. Here,

Hðt;x;PÞ ¼ H̄ þK
4
·
∂
∂P

!
j ~Hj2

Ω −K · V

"
; (15)

V ≡ v̄g is the OC velocity, and the remaining notation is
self-explanatory. The model of point particles corresponds
to Iðt;xÞ ¼ δðx −XðtÞÞj det gijj−1=2. The corresponding
total Lagrangian L of the OC is obtained by integrating L̄
over the volume. That yields L ¼ P · _X −Hðt;X;PÞ with
P≐∇S̄, so H serves as the Hamiltonian for the canonical
pair (X, P).
Inparticular,foranelementaryparticlewithmassmandcharge

e, one has Hðt;x;PÞ ¼ fm2c4 þ ½P − eAðt;xÞ=c&2g1=2þ
eφðt;xÞ. Here A ¼ Āþ ~A and φ ¼ φ̄þ ~φ are the vector
and scalar potentials; Ā and φ̄ describe quasistatic fields, if
any; ~A ¼ Re½ ~AceiΘðt;xÞ& and ~φ ¼ Re½ ~φceiΘðt;xÞ& describe a
MW, which is now comprised of oscillations of the electric
field with complex amplitude ~Ec ¼ iΩ ~Ac=c − iK ~φc and
magnetic fieldwith complex amplitude ~Bc ¼ iK × ~Ac. This
leads to

H̄ ¼ H0 þ e2j ~Acj2=ð4mc2γ̄3Þ; (16)

~H ¼ −eðP − eĀ=cÞ · ~A=ðmcγ̄Þ þ e ~φ; (17)

where H0≐mc2γ̄ þ eφ̄, γ̄≐½1þ ðP − eĀ=cÞ2=ðmcÞ2&1=2,
and quiver terms scaling as second and higher powers of
~A and ~φ are neglected. One can check then that Eq. (15)
reproduces the OC Hamiltonians derived earlier, and
Φ≐H −H0 is the well-known ponderomotive potential [1].
Summary.—Nonlinear interactions of waves via instan-

taneous XPM can be cast in the same way as ponder-
omotive wave-particle interactions in a high-frequency EM
field. The ponderomotive effect arises when rays of a PW
scatter off medium perturbations produced by a MW, much
like charged particles scatter off a quasiperiodic EM field.
The striking parallels to the point-particle dynamics lead to
new methods of wave manipulation, including asymmetric
barriers for light.

The work was supported by NNSA Grant No.
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FIG. 3 (color online). Main figure: schematic of a one-
dimensional asymmetric ponderomotive wall for PW rays.
Rainbow-colored and oscillating is ~ω2, which determines w
[Eq. (7)]. On the left, adiabatic side (shaded), the ponderomotive
force reflects all rays below a certain frequency before they even
reach the nonadiabatic region. On the right side, rays enter the
nonadiabatic region first; then, depending on the initial phase,
some of them are reflected, but others are transmitted, much like
particles in asymmetric barriers discussed in Ref. [6]. Inset:
possible scheme of a light concentrator (see the main text).
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